Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338860

RESUMO

In the artificial breeding of Pampus argenteus (Euphrasen, 1788), female fish spawn before male release sperm, which indicates rapid ovarian development. In fish, aromatase is responsible for converting androgens into estrogens and estrogen plays a crucial role in ovarian development. In this study, we aimed to investigate the potential role of brain-type and ovarian-type aromatase to study the rapid ovarian development mechanism. The results showed that cyp19a1a was mainly expressed in the ovary and could be classified as the ovarian type, whereas cyp19a1b could be considered as the brain type for its expression was mainly in the brain. During ovarian development, the expression of cyp19a1a in the ovary significantly increased from stage IV to stage V and Cyp19a1a signals were present in the follicle cells, while cyp19a1b expression in the pituitary gland decreased from stage IV to stage V. To further investigate the function of Cyp19a1a, recombinant Cyp19a1a (rCyp19a1a) was produced and specific anti-Cyp19a1a antiserum was obtained. The expressions of cyp19a1a, estrogen receptors 2 alpha (esr2a), and androgen receptor alpha (arα) were significantly upregulated in the presence of rCyp19a1a. Meanwhile, cyp19a1a was expressed significantly after E2 treatment in both ovarian and testicular tissue culture. Taken together, we found two forms of aromatase in silver pomfret. The ovarian-type aromatase might play an important role in ovarian differentiation and maturation, and participate in E2 synthesis through co-regulation with esr2a. The brain-type aromatase cyp19a1b might be involved in the regulation of both brain and gonadal development.


Assuntos
Perciformes , Receptores de Estrogênio , Animais , Masculino , Feminino , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Aromatase/metabolismo , Sêmen/metabolismo , Ovário/metabolismo , Estrogênios/metabolismo , Peixes/metabolismo , Perciformes/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo
2.
Rev. int. med. cienc. act. fis. deporte ; 24(94): 75-90, jan. 2024. tab, graf
Artigo em Inglês | IBECS | ID: ibc-230944

RESUMO

In social development, due to the prevalence of a physically active lifestyle among youths, the importance of physical activities (PA), categorized as martial arts (MA) has increased. The purpose of the study is to gain knowledge about the relationships between chosen and used MA kinds and the composition of teenagers' weekly PA, taking into account gender variations. The research included 1,000 male and 1,200 female athletes. This may emphasize the connection between martial arts and physical fitness. Actively practicing martial arts, such as Karate or taekwondo, greatly enhances a variety of physical fitness facets, such as cardiovascular endurance, strength, flexibility, balance, and coordination. It helps improve general physical health by reducing body fat, building muscle, etc. A comprehensive approach to fitness is provided by martial arts training, which combines aerobic workouts, strength training, and stretching routines. Martial arts improve mental health, discipline, self-confidence, and physical benefits. As a result, martial arts help to promote general health and well-being by offering a practical way to develop and maintain physical fitness. The current study supports the existence of strong correlations between MA preference and performance and active PA in boys. Like other kinds of PA, teenagers who participate in MA throughout the year can fulfill the weekly PA recommendation. It is necessary to do further study on the correlations between participation in MA and the likelihood of adhering to the PA recommendations compared to other forms of PA (AU)


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Estilo de Vida , Artes Marciais , Saúde Mental , Inquéritos e Questionários
3.
Anim Reprod Sci ; 261: 107373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211439

RESUMO

Silver pomfret is a species of global significance due to its high nutritional in fisheries sector. To accurately ascertain the timing of sex differentiation mechanism and mRNA level in this species, this study examined gonad morphology and patterns of gene expression related to sex differentiation in males and females from 51 to 180 days post hatch (dph), the temperature of water was maintained at 26 ± 1 â„ƒ. Distinct morphological differentiation of the silver pomfret ovaries, marked by the emergence of primary oocytes, became apparent from 68 dph. By 108 dph, the testes began to differentiate, as evidenced by the appearance of the efferent duct. Early oocytes exhibited a diameter ranged from 0.077 mm to 0.682 mm, with an average diameter of 0.343 ± 0.051 mm. The proportions of various types of germ cells within the testes were subjected to analysis. The localization of Vasa during the early stages of sexual differentiation was a subject to analysis as well. Vasa was predominantly localized within the cytoplasm of gonocyte, peri-nucleolus stage oocytes, primary oocytes and type A spermatogonocytes, indicating that Vasa is involved in the early gonadal differentiation of silver pomfret. The study investigated the expression patterns of dmrt1, gsdf, amh, foxl2, cyp19a1a, cyp11a, sox3 and vasa, all of which are involved in the sex differentiation of teleosts. Among these genes, amh, gsdf, sox3, foxl2, vasa were indentified as crucial contributors to the early gonadal development of silver pomfret. Significant sex-related differences were observed in the expression patterns of amh, dmrt1, gsdf, cyp11a, sox3, cyp19a1a, vasa. This study provides novel insights into the timing of physiological changes associated with the sexual differentiation of silver pomfret. Collectively, the present data indicates that the differentiation of ovaries and testes take place approximately at 68 dph in females and 108 dph in males.


Assuntos
Gônadas , Perciformes , Masculino , Feminino , Animais , Ovário , Perciformes/genética , Testículo/metabolismo , Diferenciação Sexual/genética
4.
J Am Soc Mass Spectrom ; 34(12): 2700-2710, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37967285

RESUMO

Membrane proteins (MPs) play a crucial role in cell signaling, molecular transport, and catalysis and thus are at the heart of designing pharmacological targets. Although structural characterization of MPs at the molecular level is essential to elucidate their biological function, it poses a significant challenge for structural biology. Although mass spectrometry-based protein footprinting may be developed into a powerful approach for studying MPs, the hydrophobic character of membrane regions makes structural characterization difficult using water-soluble footprinting reagents. Herein, we evaluated a small series of MS-based photoactivated iodine reagents with different hydrophobicities. We used tip sonication to facilitate diffusion into micelles, thus enhancing reagent access to the hydrophobic core of MPs. Quantification of the modification extent in hydrophilic extracellular and hydrophobic transmembrane domains provides structurally sensitive information at the residue-level as measured by proteolysis and LC-MS/MS for a model MP, vitamin K epoxide reductase (VKOR). It also reveals a relationship between the reagent hydrophobicity and its preferential labeling sites in the local environment. The outcome should guide the future development of chemical probes for MPs and promote a direction for relatively high-throughput information-rich characterization of MPs in biochemistry and drug discovery.


Assuntos
Pegadas de Proteínas , Espectrometria de Massas em Tandem , Indicadores e Reagentes , Cromatografia Líquida , Proteínas de Membrana/química , Interações Hidrofóbicas e Hidrofílicas
5.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511526

RESUMO

Pampus argenteus is important for commercial fishery catch species and is an emerging target for aquaculture production. Notably, P. argenteus has a bizarre morphology and lacks pelvic fins. However, the reason for the lack of pelvic fins remains unclear, ultimately leading to frequent upside-down floating of P. argenteus during breeding and marked consumption of physical energy. Some lineages, including whales, fugu, snakes, and seahorse, independently lost the pelvic appendages over evolutionary time. Do different taxa employ the same molecular genetic pathways when they independently evolve similar developmental morphologies? Through analysis of the gene responsible for appendage localization, Hoxd9, it was discovered that the Hox domain was absent in the Hoxd9 gene of P. argenteus, and the Hoxd9b gene lacked the Hox9 activation region, a feature not observed in the Hoxd9 gene of other fish species. Interestingly, those distinctive characteristics are not observed in the Hoxd9 gene of other fish species. To determine the association between the Hoxd9 gene characteristics and the pelvic fin deletion in P. argenteus, the full-length cDNA of the Hoxd9a gene was cloned, and morphological observations of the species' juveniles were performed using stereomicroscopy and scanning electron microscopy. Thereafter, the tissue localization of Hoxd9a in the species was analyzed at the gene and protein levels. Based on the results, deletion of the Hoxd9a structural domain possibly leads to disruptions in the protein translation and the pelvic fin localization in P. argenteus during its early ontogenetic developmental stage, resulting in the absence of pelvic fins.


Assuntos
Perciformes , Smegmamorpha , Animais , Genes Homeobox , Evolução Biológica , Peixes/genética , Perciformes/genética
6.
Biol Reprod ; 109(2): 227-237, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37228017

RESUMO

Insulin-like growth factor 1 (Igf1) is known to promote ovarian maturation by interacting with other hormones. However, the limited research on the role of Igf1 in the energy metabolism supply of gonads has hindered further exploration. To explore the role of Igf1 in gonadal development of silver pomfret, we analyzed the expression levels and the localization of igf1 mRNA and protein during testicular and ovarian development of silver pomfret. The results of the study showed upregulation of Igf1 in the critical period of vitellogenesis and sperm meiosis, which was found to be mainly expressed in the somatic cells of the gonads. Upon adding E2 and Igf1 to cultured gonadal tissues, the expression of energy-related genes was significantly increased, along with the E2-enhanced effect of Igf1 in the testis. Importantly, stimulation of both ovaries and testes with E2 and Igf1 led to a remarkable increase in the expression of vitellogenesis and meiosis-related genes. Therefore, we conclude that Igf1 promotes vitellogenesis and sperm meiosis by regulating gonadal energy production. Moreover, the expression of Igf1 in gonads is significantly regulated by E2. These findings provide new insights for the research of Igf1 in fish breeding, thus allowing the regulation of energy metabolism between growth and reproduction for successful reproductive outcomes.


Assuntos
Fator de Crescimento Insulin-Like I , Perciformes , Animais , Feminino , Masculino , Fator de Crescimento Insulin-Like I/metabolismo , Sêmen/metabolismo , Gônadas/metabolismo , Ovário/metabolismo , Perciformes/genética , Metabolismo Energético/genética
7.
J Fish Biol ; 103(1): 59-72, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080919

RESUMO

Photoperiod has a great influence on the growth and ovarian development and maturation of fishes. To analyse the effects of photoperiod on growth and ovarian development of an important marine economic fish, silver pomfret Pampus argenteus, short photoperiod group (L:D = 8:16), control group (L:D = 12:12) and long photoperiod group (L:D = 18:6) were set up for 60 days. The growth performance, ovarian development, changes in hormones and key enzyme activities in the hypothalamic-pituitary-gonadal (HPG) axis and expressions of key regulatory genes in the HPG axis were studied under different photoperiod conditions. The results showed that the final weight gain, body weight index, specific growth rate for weight, specific growth rate for length and average daily growth were the highest in the long photoperiod group, and the feed conversion rate was the lowest. Under long photoperiod condition, gonado-somatic index and hepato-somatic index were higher, ovarian maturity was better and expressions of HPG axis-related regulatory genes foxl2a, foxl2b, cyp19a1a, cyp19a1b, kiss, gpr54-2, gnrh2, fsh and lh were higher. When compared with the other two groups, in the long photoperiod group, the change trend of estradiol (E2) was consistent with those of luteinizing hormone, melatonin (MT) and kisspeptin, and the levels were higher on the 20th and 50th days. These results indicate that prolongation of the photoperiod can improve the growth performance of P. argenteus and promote ovary development and maturation. The authors speculate that photoperiod may regulate the ovarian activity of P. argenteus through MT and kisspeptin/gpr54 signalling pathways. The results show that photoperiod can regulate the ovarian development of P. argenteus, which would help in breaking the seasonal restrictions of animals and regulating an animal's reproductive cycle.


Assuntos
Perciformes , Fotoperíodo , Feminino , Animais , Kisspeptinas , Hormônio Luteinizante/metabolismo , Hormônio Liberador de Gonadotropina , Perciformes/fisiologia , Peixes/metabolismo
8.
Xenobiotica ; 53(1): 12-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36803165

RESUMO

Plasma protein binding (PPB) studies on the SARS-CoV-2 main protease inhibitor nirmatrelvir revealed considerable species differences primarily in dog and rabbit, which prompted further investigations into the biochemical basis for these differences.The unbound fraction (fu) of nirmatrelvir in dog and rabbit plasma was concentration (2-200 µM)-dependent (dog fu,p 0.024-0.69, rabbit fu,p 0.010-0.82). Concentration (0.1-100 µM)-dependent binding in serum albumin (SA) (fu,SA 0.040-0.82) and alpha-1-acid glycoprotein (AAG) (fu,AAG 0.050-0.64) was observed in dogs. Nirmatrelvir showed minimal binding to rabbit SA (1-100 µM: fu,SA 0.70-0.79), while binding to rabbit AAG was concentration-dependent (0.1-100 µM: fu,AAG 0.024-0.66). In contrast, nirmatrelvir (2 µM) revealed minimal binding (fu,AAG 0.79-0.88) to AAG from rat and monkeys. Nirmatrelvir showed minimal-to-moderate binding to SA (1-100 µM; fu,SA 0.70-1.0) and AAG (0.1-100 µM; fu,AAG 0.48-0.58) from humans across tested concentrations.Nirmatrelvir molecular docking studies using published crystal structures and homology models of human and preclinical species SA and AAG were used to rationalise the species differences to plasma proteins. This suggested that species differences in PPB are primarily driven by molecular differences in albumin and AAG resulting in differences in binding affinity.


Assuntos
Anti-Infecciosos , COVID-19 , Ratos , Humanos , Animais , Cães , Coelhos , Ligação Proteica , SARS-CoV-2/metabolismo , Inibidores de Proteases , Especificidade da Espécie , Simulação de Acoplamento Molecular , Proteínas Sanguíneas/metabolismo , Albumina Sérica/metabolismo , Orosomucoide/metabolismo , Antivirais , Inibidores Enzimáticos
9.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675173

RESUMO

The pharyngeal sac is a comparatively rare organ in the digestive tract among teleost fishes. However, our understanding of this remarkable organ in the silver pomfret (Pampus argenteus) is limited. In the present study, we examined the various morphological and histological characteristics of the pharyngeal sac using histochemical techniques and electron microscopy. The pharyngeal sac showed unique characteristics such as well-developed muscular walls, weakly keratinized epithelium, numerous goblet cells, and needle-like processes on the papillae. The porous cavity of the papillae contained numerous adipocytes and was tightly enveloped by type I collagen fibers. These structures might provide mechanical protection and excellent biomechanical properties for grinding and shredding prey. A comparison of gene expression levels between the pharyngeal sac and esophagus using RNA-seq showed that phenotype-associated genes (epithelial genes and muscle genes) were upregulated, whereas genes related to nutrient digestion and absorption were downregulated in the pharyngeal sac. These results support the role of the pharyngeal sac in shredding and predigesting food. Overall, these findings provide a clearer understanding of the pharyngeal sac morphology and explain the morphological adaptations of the digestive tract for feeding on gelatinous prey. To our knowledge, this is the first report on pharyngeal sac gene expression in P. argenteus.


Assuntos
Perciformes , Animais , Perciformes/genética , Peixes , Trato Gastrointestinal , Faringe , Células Caliciformes
10.
Nat Struct Mol Biol ; 30(1): 22-30, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522428

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT)1 is a mitochondrial outer membrane protein that catalyzes the first step of de novo glycerolipid biosynthesis. Hepatic expression of GPAT1 is linked to liver fat accumulation and the severity of nonalcoholic fatty liver diseases. Here we present the cryo-EM structures of human GPAT1 in substrate analog-bound and product-bound states. The structures reveal an N-terminal acyltransferase domain that harbors important catalytic motifs and a tightly associated C-terminal domain that is critical for proper protein folding. Unexpectedly, GPAT1 has no transmembrane regions as previously proposed but instead associates with the membrane via an amphipathic surface patch and an N-terminal loop-helix region that contains a mitochondrial-targeting signal. Combined structural, computational and functional studies uncover a hydrophobic pathway within GPAT1 for lipid trafficking. The results presented herein lay a framework for rational inhibitor development for GPAT1.


Assuntos
Fígado , Membranas Mitocondriais , Humanos , Fígado/metabolismo , Membranas Mitocondriais/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/química , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Sequência de Aminoácidos
11.
Artigo em Inglês | MEDLINE | ID: mdl-34769602

RESUMO

Water conservation areas play an important role in regional ecological security patterns. The Funiu Mountain water conservation area is located in the densely populated central region of China, where human disturbance to the ecosystem is strong and ecosystem services are facing a very serious situation. Identifying and evaluating the factors leading to changes in the ecosystem service value (ESV) of the Funiu Mountain water conservation area can provide scientific guidance for ecological management and sustainable development. Using multi-source data and machine learning methods, our research reveals the characteristics of the spatio-temporal variation in the ESV, constructs a system of ESV influencing factors from the comprehensive perspectives of the natural environment and human activities, and discusses the comprehensive effects of the influencing factors on the Funiu Mountain area from 2000 to 2015. The results are as follows. (1) From 2000 to 2005, the ESV increased 375 million yuan, and from 2005 to 2015, it decreased 154 million yuan. (2) Hydrological regulation, biodiversity maintenance, soil conservation, gas regulation, and climate regulation were the main types of ecosystem services in the Funiu Mountain area. (3) The ESV was influenced by the comprehensive effects of the natural environment and human activities. Population was the most important influencing factor of the ESV; in addition, the normalized difference vegetation index (NDVI), precipitation, and economic factors had important influences on the ESV. (4) With the intensification of human activities, humanistic factors have surpassed the relatively stable natural factors, becoming the main factors of the ESV. With economic development, the effect of human activities on the ESV may be further intensified in the future.


Assuntos
Conservação dos Recursos Hídricos , Ecossistema , Biodiversidade , China , Conservação dos Recursos Naturais , Humanos
12.
J Am Soc Mass Spectrom ; 32(11): 2636-2643, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34664961

RESUMO

Membrane proteins play crucial roles in cell signaling and transport and, thus, are the targets of many small molecule drugs. The characterization of membrane protein structures poses challenges for the high-resolution biophysical tools because the transmembrane (TM) domain is hydrophobic, opening an opportunity for mass spectrometry (MS)-based footprinting. The hydrophobic reagent diethylpyrocarbonate (DEPC), a heavily studied footprinter for water-soluble proteins, can label up to 30% of surface residues via a straightforward protocol, streamlining the MS-based footprinting workflow. To test its applicability to membrane proteins, we footprinted vitamin K epoxide reductase (VKOR) membrane protein with DEPC. The results demonstrate that besides labeling the hydrophilic extracellular (extramembrane (EM)) domain, DEPC can also diffuse into the hydrophobic TM domain and subsequently label that region. The labeling process was facilitated by tip sonication to enhance reagent diffusion into micelles. We then analyzed the correlation between the residue modification extent and the theoretical accessible surface area percentage (%ASA); the data generally show good correlation with the residue location. Compared with conventional hydrophilic footprinters, the relatively hydrophobic DEPC can map a membrane protein's TM domain, suggesting that the reagent's hydrophobicity can be exploited to obtain structural information on the membrane-spanning region. This encouraging result should assist in the development of more efficient footprinters for membrane protein TM domain footprinting, enabled by further understanding the relationship between a reagent's hydrophobicity and its preferred labeling sites.


Assuntos
Dietil Pirocarbonato/química , Espectrometria de Massas/métodos , Proteínas de Membrana , Pegadas de Proteínas/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
13.
Gen Comp Endocrinol ; 311: 113840, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34216589

RESUMO

Estrogen has a pivotal role in early female differentiation and further ovarian development. Aromatase (Cyp19a) is responsible for the conversion of androgens to estrogens in vertebrates. In teleosts, cyp19a1a and it paralog cyp19a1b are mainly expressed in the ovary and hypothalamus, respectively. Decreased plasma estrogen levels and lower cyp19a1a expression are associated with the initiation of female-to-male sex change in protogynous grouper. However, an 17α-methyltestosterone (MT)-induced the sex change from a female to a precocious male is a transient phase, and a reversible sex change (induced male-to-female) occurs after chemical withdrawal. Thus, we used this characteristic to study the epigenetic modification of cyp19a1a promoter in orange-spotted grouper. CpG-rich region with a CpG island is located on the putative regulatory region of distal cyp19a1a promoter. Our results showed that cyp19a1a promoter exhibited tissue-specific methylation status. Low methylation levels of distal cyp19a1a promoter and hypomethylated (0-40%) clones of cyp19a1a promoter region were widely observed in the ovary but not shown in testis and other tissues. In femaleness, higher numbers of hypomethylated clones of cyp19a1a promoter region were observed in the vitellogenic oocyte stage compared to the primary oocyte stage. Furthermore, decreased numbers of hypomethylated clones of cyp19a1a promoter region were associated with the maleness during the female-to-male sex change. DNA methylation inhibitor (5-aza-2'-deoxycytidine) delayed the spermatogenesis process (according to germ cell stage and numbers: by decrease of sperm and increase of spermatocytes) but did not influence the reversed sex change in MT-induced bi-directional sex change. These results suggest that epigenetic modification of cyp19a1a promoter may play an important role during the sex change in orange-spotted grouper.


Assuntos
Bass , Metilação de DNA , Diferenciação Sexual , Animais , Bass/genética , Família 19 do Citocromo P450/genética , Feminino , Masculino , Metiltestosterona/farmacologia , Regiões Promotoras Genéticas/genética , Processos de Determinação Sexual , Diferenciação Sexual/genética
14.
Angew Chem Int Ed Engl ; 60(16): 8867-8873, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33751812

RESUMO

A free-radical footprinting approach is described for integral membrane protein (IMP) that extends, significantly, the "fast photochemical oxidation of proteins" (FPOP) platform. This new approach exploits highly hydrophobic perfluoroisopropyl iodide (PFIPI) together with tip sonication to ensure efficient transport into the micelle interior, allowing laser dissociation and footprinting of the transmembrane domains. In contrast to water soluble footprinters, PFIPI footprints both the hydrophobic intramembrane and the hydrophilic extramembrane domains of the IMP vitamin K epoxide reductase (VKOR). The footprinting is fast, giving high coverage for Tyr (100 %) and Trp. The incorporation of the reagent with sonication does not significantly affect VKOR's enzymatic function, and tyrosine iodination does not compromise protease digestion and the subsequent analysis. The locations for the modifications are largely consistent with the corresponding solvent accessibilities, recommending this approach for future membrane protein footprinting.


Assuntos
Detergentes/metabolismo , Vitamina K Epóxido Redutases/metabolismo , Detergentes/química , Radicais Livres/química , Radicais Livres/metabolismo , Micelas , Estrutura Molecular , Fotólise , Sonicação , Vitamina K Epóxido Redutases/química
15.
Anal Chem ; 92(17): 11553-11557, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867496

RESUMO

Protein digestion is a key challenge in mass spectrometry (MS)-based structural proteomics. Although using hydrogen-deuterium exchange kinetics with MS (HDX-MS) to interrogate the high-order structure of proteins is now established, it can be challenging for ß-barrel proteins, which are important in cellular transport. These proteins contain a continuous chain of H-bonds that impart stability, causing difficulty in digestion for bottom-up measurements. To overcome this impediment, we tested organic solvents as denaturants during on-line pepsin digestion of soluble ß-barrel proteins. We selected green fluorescent protein (GFP), siderocalin (Scn), and retinol-binding protein 4 (RBP4) as model proteins and screened six different polar-aprotic and polar-protic solvent combinations to disrupt the H-bonds and hydrophobic interactions holding together the ß-sheets. The use of organic solvents improves digestion, generating more peptides from the rigid ß-barrel regions, without compromising the ability to predict the retinol binding site on RBP4 when adopting this proteolysis with HDX.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Proteínas/química , Melhoramento Biomédico , Deutério/química , Proteínas de Fluorescência Verde/química , Hidrogênio/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipocalina-2/química , Pepsina A/metabolismo , Proteólise , Proteínas Celulares de Ligação ao Retinol/química , Solventes/química
16.
Angew Chem Int Ed Engl ; 59(15): 5880-5889, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31588625

RESUMO

Structural proteomics refers to large-scale mapping of protein structures in order to understand the relationship between protein sequence, structure, and function. Chemical labeling, in combination with mass-spectrometry (MS) analysis, have emerged as powerful tools to enable a broad range of biological applications in structural proteomics. The key to success is a biocompatible reagent that modifies a protein without affecting its high-order structure. Fluorine, well-known to exert profound effects on the physical and chemical properties of reagents, should have an impact on structural proteomics. In this Minireview, we describe several fluorine-containing reagents that can be applied in structural proteomics. We organize their applications around four MS-based techniques: a) affinity labeling, b) activity-based protein profiling (ABPP), c) protein footprinting, and d) protein cross-linking. Our aim is to provide an overview of the research, development, and application of fluorine-containing reagents in protein structural studies.


Assuntos
Flúor/química , Proteômica/métodos , Animais , Humanos , Indicadores e Reagentes/química , Proteínas/química , Proteínas/metabolismo
17.
ACS Chem Biol ; 15(5): 1154-1160, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31869199

RESUMO

Both host and pathogen competitively manipulate coordination environments during bacterial infections. Human cells release the innate immune protein siderocalin (Scn, also known as lipocalin-2/Lcn2, neutrophil gelatinase-associated lipocalin/NGAL) that can inhibit bacterial growth by sequestering iron in a ferric complex with enterobactin (Ent), the ubiquitous Escherichia coli siderophore. Pathogenic E. coli use the virulence-associated esterase IroE to linearize the Ent cyclic trilactone to linear enterobactin (lin-Ent). We characterized lin-Ent interactions with Scn by using native mass spectrometry (MS) with hydrogen-deuterium exchange (HDX) and Lys/Arg specific covalent footprinting. These approaches support 1:1 binding of both Fe(III)-lin-Ent to Scn and iron-free lin-Ent to Scn. Both ferric and nonferric lin-Ent localize to all three pockets of the Scn calyx, consistent with Scn capture of lin-Ent both before and after Fe(III) chelation. These findings raise the possibility that Scn neutralizes both siderophores and siderophore-bound iron during infections. This integrated, MS-based approach circumvents the limitations that frustrate traditional structural approaches to examining Scn interactions with enterobactin-based ligands.


Assuntos
Aminoácidos/química , Proteínas de Transporte/química , Enterobactina/química , Compostos Férricos/química , Espectrometria de Massas/métodos , Sítios de Ligação , Complexos de Coordenação/química , Deutério/química , Escherichia coli/química , Humanos , Marcação por Isótopo , Ligantes , Lipocalina-2 , Peptídeos/química , Conformação Proteica , Sideróforos/química
18.
Int J Pharm ; 572: 118776, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678374

RESUMO

A comprehensive cocrystal study for the insoluble natural pharmaceutical compound xanthotoxin (XT) was conducted, in which xanthotoxin-para aminobenzoic acid (XT-PABA) and xanthotoxin-oxalic acid (XT-OA) cocrystals were obtained. The xanthotoxin cocrystals were characterized by powder X-ray diffraction, thermal analysis, and FT-IR spectra, and the crystal structures were determined by single-crystal X-ray diffraction. Crystal structures and thermal analysis showed that XT-OA was more stable than XT-PABA. Energy framework calculation indicated that H-bond and π···π interactions generated in XT-OA were stronger than that in XT-PABA and xanthotoxin. The powder dissolution experiments of xanthotoxin and its cocrystals suggested the XT-OA cocrystal might be applied as an alternative formulation of API, on account of its enhanced solubility and stability in the hydrochloric acid buffer solution (pH 1.2). The cocrystallization engineering can prolong the enhanced apparent solubility via modulating the stability.


Assuntos
Metoxaleno/química , Solubilidade/efeitos dos fármacos , Ácido 4-Aminobenzoico/química , Cristalização/métodos , Cristalografia por Raios X/métodos , Estabilidade de Medicamentos , Ligação de Hidrogênio , Ácido Oxálico/química , Difração de Pó/métodos , Pós/química , Difração de Raios X/métodos
19.
Anim Reprod Sci ; 208: 106078, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31405470

RESUMO

Enhancing the production of aquatic animals is very important for fishery management and aquaculture applications. Ovaries have important functions in producing oocytes and hormones. The Chinese clam (Mactra chinensis) is a nutritious saltwater shellfish. Significant biochemical changes take place during the sexual maturation of M. chinensis; however, the genetic mechanisms of this process are unclear. Transcriptome sequencing can determine gene expression changes as development occurrs. In the present study, transcriptome sequencing was used to produce a comprehensive transcript dataset for the ovarian development of M. chinensis. The different ovarian developmental stages were determined using hematoxylin-eosin staining. There was identification of 54,172 unigenes at the intermediate stage and 63,081 at the ripening stage, and 80,141 all-unigenes were assembled to determine the molecular mechanism of ovarian development in M. chinensis. Quantitative real-time PCR for nine mRNAs confirmed the RNA-seq data. Functional annotation of the transcripts indicated there were important pathways in ovarian development, such as those involving the vitellogenin gene. Six pathways associated with ovarian development were identified: estrogen signaling pathway, GnRH signaling pathway, progesterone-mediated oocyte maturation, ovarian steroidogenesis, steroid hormone biosynthesis, and steroid biosynthesis. Significant upregulation of protein kinase alpha (PKA) and calmodulin (CAM) in four of the pathways indicates that PKA and CAM are active in M. chinensis ovarian development during maturation. Results of the present study provide the first comprehensive transcriptomic resource for M. chinensis ovaries, which will increase understanding of the molecular mechanisms underlying sexual maturation and promote molecular nutritional studies of M. chinensis.


Assuntos
Bivalves/fisiologia , Regulação da Expressão Gênica/fisiologia , Ovário/fisiologia , Animais , Feminino , Maturidade Sexual/fisiologia
20.
Anal Chem ; 91(2): 1416-1423, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30495934

RESUMO

Metal ions, usually bound by various amino-acid side chains in proteins, play multiple roles in protein folding, conformational change, cellular communication, and catalysis. Ca(II) and Mg(II), abundant among biologically relevant cations, execute their cellular functions associated with the conformational change of bound proteins. They bind with proteins where carboxylic acid residues are dominant ligands. To develop mass spectrometry for mapping protein-binding sites, we implemented a new carboxyl group footprinter, benzhydrazide, and refined it with isotope encoding. The method uses carbodiimide chemistry to footprint carboxylic residues, whereby 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide activates a carboxyl group followed by nucleophilic attack by benzhydrazide forming a stable labeled product. We tested the effectiveness of isotope-encoded benzhydrazide by studying Ca2+ and Mg2+ binding of calmodulin, an EF-hand protein. The footprinting results indicate that the four active sites for metal-ion binding (EF hands I, II, III, and IV) and the linker region (peptide 78-86) undergo conformational changes upon Ca(II) and Mg(II) binding, respectively. The outcome is consistent with previously reported results and 3-D structures, thereby validating a new reagent that is more reactive and discriminating for specific amino-acid protein footprinting. This reagent should be important for locating metal-binding sites of other metalloproteins.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Hidrazinas/química , Magnésio/metabolismo , Espectrometria de Massas , Isótopos/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...